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accuracy, completeness, or usefulness of the information contained in this report, 
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use of any information, apparatus, method or process disclosed in  this report. 

As used above, ''person acting on behalf of NASA" includes any employee or contractor 
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This report describes work accomplished under Contract NAS 3-2540 during the period 
c 

December 21, 1964 to March 20, 1965. This program i s  being administered by R. T. Begley 

of the Astronuclear Laboratory, Westinghouse Electric Corporation. G. G. Lessmann and 

D. R. Stoner performed the experimental investigations. 

Mr. P. E. Moorhead of the National Aeronautics and Space Administration i s  Techni- 

cal Manager of this program. 
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1. INTRODUCTION 

This i s  the Seventh Quarterly Progress Report describing work accomplished under - 
Contract NAS 3-2540. The objective of this program i s  to determine the weldability and 

long time elevated temperature stability of promising refractory metal alloys in order to 

determine those most suitable for use in advanced alkali-metal space electric power systems.; 

A detailed discussion of the program and program objectives was presented in the First 

Quarterly Report. Alloys included in this investigation are listed in Table 1. 

Process and test controls employed throughout this program emphasize the important 

influence of interstitial elements on the properties of refractory metal alloys. Stringent pro- 

cess and test procedures are required, including continuous monitoring of the TIG weld 

chamber atmosphere, electron beam welding at low pressures, aging in furnaces employing 

hydrocarbon free pumping systems providing pressures less than 10 torr, and chemical 

sampling following successive stages of the evaluation for verification of these process 

contro Is. 

-8 

Equipment requirements and set-up, and procedures for welding and testing, have been 

described in previous progress reports. Any improvements in processes, changes in procedures, 

or additional processes and procedures are described in this report. 

1 
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TABLE 1 - Alloys Included in the Weldability and Thermal Stability Evaluations 

Alloy 

AS -55 

8-66 

c-1 B Y  

Cb-752 

D-43 

FS -85 

SCb-291 

D43 t Y 

T-111 

T-222 

Ta-1OW 

W-25 Re 

W 

S y Ivan i a "A I' 

Nom i na I Corn p s i  t i on 
Weiaht Percent 

C b -5w - 1 Zr -0.2Y -0.06C 

C b -5Mo -5V- 1 Zr 

Cb-1 OW-lOHf+Y 

C b- 1 OW -2.5Zr 

Cb-IOW-1 Zr-O.1C 

Cb-27Ta-1OW-1 Zr 

C b- 1 OW- 1 OTa 

Cb-lOW-I Zr-O.lC+Y 

Ta -8 W -2Hf 

Ta -9.6W-2.4Hf -0.01 C 

Ta -1 OW 

W -25Re 

Una I loyed 

W -0.5Hf -0.02C 

. 

NOTE: A l l  alloys from arc-cast and/or electron beam melted material 
except Sylvan ia "A I' 
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II. SUMMARY 

The remainder of the material required for this program was received during this period. 

In addition to the alloys listed in Table 1, a limited quantity of yttrium modif ied Cb-IOW- 

1 Zr-0.1C sheet was procured from Wah Chang. The purpose in evaluating this material i s  to 

determine if yttrium would be beneficial in improving D-43 weld ductility in a manner 

similar to that observed with C-l29Y and AS-55. The weldability evaluation of this material 

i s  nearly complete and w i l l  be reported in the next quarterly report. 

The post weld annealing series were completed for the tantalum and columbium alloys 

w i th  the exception of yttrium modified D43. ,Since testing at numerous temperature-time 

combinations i s  impractical, three one-hour post weld annealing temperatures in the stress 

relief-recrystallization range were chosen. For the columbium alloys these were 19OO0F, 

220OOF and 2400OF and for the tantalum alloys 24OO0F, 270OoF and 3000OF. The purpose 

of these tests was twofold: to screen for short time thermal instabilities (i.e. aging) and to 

identify an overaged state for pretreatment in the final phase of this program, the long time 

thermal stability studies. Ductility as measured by the bend ductile-to-brittle transition 

temperature was used to measure weld response to annealing. After EB or TIG welding and 

annealing, the tantalum alloys remained ducti le to the lowest test temperature, -32OoF, ex- 

cept T-222 TIG welds annealed at 270OoF which had a slightly raised DBTT of -25OOF. TIG 

welds in columbium alloys responded to annealing with varying degrees of severity by losing 

ductility at the lower annealing temperatures and showing improvement over the as-welded 

ductility after annealing at the higher temperature, 2400 F. Hence, these displayed an age- 

overage response with increasing annealing temperatures demonstrating the need for post weld 

annealing in these systems. TIG welds in 8-66 were not typical in this respect since, while 

failing to overage, they lost ducti l i ty  slowly with increasing annealing temperatures. Except 

for Cb-752, EB welds in the columbium alloys showed improved ductility with annealing but 

did not display an age-overage behavior. Cb-752 EB welds responded by aging and overaging 

as was typical of the TIG welds. 

0 

3 



Astronuclear 
laboratory 

Chemical analysis data for carbon, oxygen, and nitrogen pick-up in eighteen TIG 

welds were obtained and reviewed. No apparent contamination occurred during welding. 

The thermal stability study welds for the columbium and tantalum alloys were com- 

pleted, inspected, and are being machined to the required bend and tensile test configurations. 

An evaluation of the effect of oxygen contamination on the weldability of T-1 11, 

T-222, and FS-85 was initiated as an addition to this contract. Preliminary data were 

developed. The results seem to discriminate substantially between the ductility of T-111 

and T-222 at the 150-200 ppm oxygen level. This i s  quite surprising and requires further 

verification. The detailed objectives of this effort are described in this report. The rate of 

oxidation of FS-85 in oxygen doped helium proved to be about equal to the oxidation rate 

reported for Cb-lZr in vacuum at an oxygen partial pressure three orders of magnitude lower 

than used for FS-85. Hence, the inert environment appears to offer an additional shielding 

advantage as compared to a simple vacuum. 

Welds in T-11 1, T-222, and FS-85 were screened for thermal stability at 180OOF. 

A l l  responded to aging with a measureable rise in the bend ductile-brittle transition tem- 

perature. Hardness traverses proved useful for following the aging responses. During the 

lo-'' torr aging runs of 100 and 1000 hours, specimen staining occurred as a result of vapor 

transfer of hafnium and zirconium. 

4 
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A. WE LDlN G EVALUAT IONS 

1. TIG Weld Contamination - A representative sample of welds in 0.035 inch sheet 

was analyzed for carbon, oxygen, and nitrogen pick-up. Two welds from each of six 

columbium alloys and three tantalum alloys were included. Specimens selected from each 

alloy were those welded in the best and poorest quality atmosphere. The results are listed 

in Table 2 along with the base metal chemistry. This data is plotted in Figure 1. No corre- 

lation i s  apparent between change in interstitial levels and atmosphere quality with points 

seemingly grouped randomly. This observation i s  borne out by Figure 2 in which the same 

data i s  shown plotted on a normal distribution probability scale. Random variation appears 

to be associated with the values obtained. Carbon and nitrogen values deviatefrom the 

normal distribution behavior (a straight line on this plot) and show a slight mean contamination 

value for the weld as compared with base metal. However, the no contamination (zero) points 

for these lie within the 95% confidence limits implying that l i t t le or no carbon and nitrogen 

contamination has occurred. The two high changes in carbon level (-100 ppm) were recorded 

for D-43 and are therefore not as much out of line as would appear on Figures 1 and 2 since 

this change i s  within 10% of the intentional 0.1% carbon alloying level. 

The oxygen data represent a very nearly normal distribution and display a definite bias 

indicating a loss of this element during welding in the high purity helium atmosphere of 

between 15.6 and 39.4 ppm. This bias in  oxygen analyses could be real or superficial. 

Additional experience in this area i s  anticipated and should serve to clarify these results. 

These observations show clearly that individual chemical analyses are not sufficiently 

accurate, and that a reasonable size statistic sample i s  required to demonstrate the adequacy 

of weld atmosphere control. 

l -  

Oxygen analyses of these samples were obtained by the vacuum fusion technique, nitro- 

gen by the Kjeldahl technique, and carbon using a combustion technique with a conductomet- 

ric finish. These analyses were performed under the direction of Dr. 0. H. Kriege, 

Westinghouse Research and Development Center. 

5 
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2. Post Weld Annealing Studies - Post weld annealing studies were completed for six 

columbium base alloys and three tantalum base alloys. Annealing effects were evaluated on 

the basis of the observed shift in bend ductile-to-brittle transition temperature as a function 

of annealing temperature. TIG weld results for a l l  the alloys are summarized in Figure 3, 

and EB weld results in Figure 4. Only longitudinal bend test results are plotted in these 

figures. Transverse bend test results are included in Figures 5 to 13 in which the post weld 

annealing responses are plotted individually for the various alloys. The 144 bend transition 

curves which are summarized in these figures are not included in this report. 

One hour post weld annealing temperatures were selected in the stress relief-recrystal- 

lization range. Hence, the columbium alloys were annealed at 1900OF, 2200°F, and 240O0F, 

while the tantalum alloys were annealed at 24OO0F, 27OO0F, and 30OOOF. Welding parameters 

which produced the lowest as-welded DBll, as determined during the previously reported 

parameter optimization series, were used in preparing welds for this evaluation. These are 

listed in Table 3. The optimized weld parameters in combination with the most beneficial 

post weld anneal, i f  any, wi l l  be used for preparation and conditioning of specimens for 

evaluation in the thermal stability phase of this program. This approach i s  expected to pro- 

vide a metallurgical structure optimized w i t h  respect to thermal stability prior to conducting 

long time aging tests. Selected post weld anneals are listed in Table 4. 

All of the columbium alloys responded to  post weld annealing. TIG welds in D-43, 

Cb-752, C-lBY, and SCb-291 appear to experience an age-overage response. FS-85 TIG 

welds experience improved ductility after the 1900 F anneal, secondary aging during the 

2200°F anneal and overaging at 240OOF. A similar response in FS-85 has been reported 

previously''). 8-66 showed a 5OoF increase in DBTT probably resulting primarily from grain 

growth. Except for T-222 at 270O0F, the TIG welded tantalum alloys did not respond to 

annealing wi th  any apparent change in the bend transition temperature. 

0 

Among the EB welds only Cb-752 displayed an age-overage reaction. The other 

columbium alloys demonstrated improved ductility with annealing while the tantalum alloys 

and SCb-291 EB welds were ductile below -32OoF for a l l  conditions. 

9 



Astronuclear 
laboratory 

0 0 0 0 0 0 0 0 0 0  w w w w w w w w w w  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

9 9 9 9 9 9 9 9 9 9  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

10 
~ 



TABLE 4 - Recommended One Hour Post Weld Anneals 
(Selected for Pre-Treatment of Welds 
for the Thermal Stability Study) 

laboratory 

1 Alloy 

i ' 8-64 

1 D-4.3 
I 

FS-85 

Cb-752 

SCb-291 

c- 129Y 

T-1 1 1  

Ta-1OW 

T-222 

TIG Welds 

None 

2400°F 

24OOOF 

2200°F 

220OoF 

2400OF 

2400°F 

None 

2400°F 

EB Welds 

1 9OO0F 

240OoF 

2200°F 

2400°F 

None 

2200°F 

2400°F 

None 

240OoF 

1 1  
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Metallographic evaluation of the post weld anneal series of welds has been initiated. 

B. THERMAL STABILITY SCREEN OF FS-85, T-1 1 1, AND T-222 

TIG and EB welds in 0.035 inch 6-85, T-1 11, and T-222 sheet were prejcreened 

for thermal stability. This was an additional effort, separate from the contemplated thermal 

stability studies, run specifically to obtain advance data on these alloys. Welds were 

annealed for 100 and 1000 hours at 1800OF in  a 10-l' torr vacuum to determine if they would 

respond to aging as measured by a shift in the bend ductile-to-brittle transition temperature. 

No  post weld annealing was done prior to aging. Bend test results are summarized in Figures 

14, 15, and 16. Hardness traverses were completed for the TIG welds. These are plotted in 

Figure 17. 

A l l  three alloys responded to aging w i t h  a measurable loss in  ductility which may have 

been avoided by "overaging" prior to the 1000-hour test with a high-r temperature post weld 

anneal. Differentiation of alloy behavior based on the relative transition temperature shift 

i s  diff icult since both tantalum alloys had as-welded transition temperatures below -32OoF, 

the lowest test temperature employed. Hence, as-welded transition temperatures were not 

known exactly for T-1 1 1 and T-222. Also, the degree of aging cannot be ascertained. T-222 

welds appear to  have been least affected by the 1800 F aging anneals. 
0 

FS-85 - Both TIG and EB welds in FS-85 showed about a 100°F increase in bend 

transition temperature after 1000 hours, Figure 14. Longitudinal and traverse bends dis- 

played about equal aging responses. TIG and EB weld fractures were similar. Fractures 

originated in the weld, at the weld interface, or heat affected zone. The bend transition 

was abrupt,occurring generally within a 50 F range. Base metal resistance to fracture was 

not significantly better than weld metal resistance. Within 25OF of the DBTT, cracks in 

longitudinal test propagated entirely through the specimen without being arrested in the 

base metal. 

0 

Metallographic examination of aged TIG welds revealed second phase precipitation 

accentuating ghost lines in the base metal and heat affected zone. Second phase precipi- 

tation also occurred in the solute rich weld areas, Figure 18. Similar second phase 
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(2) precipitation has been noted elsewhere 

softening with aging which probably reflects the effect of stress relief and the loss of solid 

solution strengtheners through precipitation. 

. Hardness traverses, Figure 17, showed a general 

T-111 - Aging in T-111 TIG welds occurred within 100 hours, and in EB welds within - 
1000 hours. Fracture location and behavior indicated that loss of ductility with aging was 

restricted largely to the weld and was evidenced only as weld tears after considerable strain 

was observed (i.e. tearing occurred near the 90" target bend). 

Metallography and hardness traverses of TIG welds in this system proved to be fairly 

interesting. The weld zone in T-11 1 (and T-222) had a slightly lower hardness in the center 

than at the edges, Figure 17. Metallographic examination revealed grains in which cellular 

growth occurred by two processes: epitaxial growth at the weld edges and nucleation and 

grain growth in the weld center. The epitaxial grains represent areas of slower grain growth 

and hence areas with a greater solute redistribution than would be expected in the area of 

nucleated grains where supercooling would result in high growth rates. This probably accounts 

for the hardness variation across the weld. The persistance of this effect through the 1OOO- 

hour age would result from a low solute (hafnium) diffusion rate at the 1800 F aging temperature. 
0 

Aged and as-welded microstructures of T-1 11 TIG welds are shown in Figures 19 and 

20. Weld and heat affected zone matricies remained single phase but grain boundary preci- 

pitation occurred in both areas during aging, Figure 19. A peculiar base metal-heat affected 

zone interface reaction Occurred, Figure 20. Careful examination revealed that the preci- 

pitate responsible for this situation could not be retained during polishing. Hence, the 

structures shown in Figure 20 are superficial to the extent that the apparent precipitates are 

actually precipitate locations which were attacked preferentially during etching. Heat 

affected zones of several aged welds were sheared out and dissolved using the bromine 

extraction technique. The extracted residue was identified by X-ray diffraction analysis. 

The primary precipitate was identified as defected hafnium monocarbide (Hf,Ta,W) C 1 -x' 

Small quantities of Ta C and HfO were present. While T-111 i s  nominally a solid solution 

alloy, produced with no intentional carbon addition, the particular heat of T-1 11 obtained 

for this program has a carbon content of 50 ppm. Since the carbon solubility in T-1 11 at 

temperatures below 3000 F i s  very low, the existence of carbide precipitates in the 

2 2 

0 
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microstructure i s  not unexpected. The phase relationships proposed by Ammon et 

the tantalum rich corner of the Ta-W-Hf-C system indicate that both carbides could be ob- 

served in this alloy. The monocarbide would tend to occur in hafnium-rich areas which exist 

in the base metal(4) as well as the weld metal. This i s  verified by the preferential location of 

precipitates in Figures 19 and 20 at ghost structure flow lines in the base metal and grain 

boundaries in  the weld and heat affected zone. The phase relationships also indicate that the 

final process annealing temperature used for T-111 (4 hrs at 2400 F) was marginal from the 

standpoint of homogenization even though adequate for recrystallization. 

for 

0 

Hardness traverses correlated well with microstructural changes. General softening 

occurred in the weld zone which would be expected both because of stress relief and by 

grain boundary precipitation. Heat affected zone softening to base metal hardness levels 

also occurred through an apparent loss, by precipitation, of solid solution strengtheners. 

The init ial as-welded heat affected zone hardness must result from the solid solutioning 

effect of the weld thermal cycle. Hardening occurred wi th  aging in the heavily precipitated 

area of the heat affected zone-base metal interface. 

T-222 - Aging in T-222 TIG and EB welds occurred after 1000 hours as indicated by a 

shift in the bend transition temperature, Figure 16. Fractures were restricted principally to 

the weld and frequently propagated along the weld centerline. Weld hardness traverses, 

which indicate anoverage after 100 hours and secondary aging after 1000 hours, tend to 

confirm the bend test response. Based on the hardness traverses, the as-welded heat affected 

zone exhibits a combination of overaging and solution anneal strengthening. Further over- 

aging of the heat affected zone occurred during the annealing treatment. 

TIG weld metallography displayed a fairly clean microstructure throughout the weld 

and base metal. Some grain boundary precipitate in the weld and heat affected zone was 

noted after aging. The base metal-heat affected zone precipitate observed in T-1 11 welds 

was absent in the T-222 welds. Since similar base metal reactions would be expected in 

these alloys, the absence of this precipitate zone in T-222 probably results from the differ- 

ence in final anneals for the two alloys during processing of the sheet by the supplier; one 

hour at 300OoF for T-222 and four hours at 240OoF for T-11 1. The fact that the T-1 11 heat 
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affected zone was clean after aging indicates that a higher temperature final recyrstallizing 

(also solutioning) anneal would have stabilized this alloy w i th  respect to the heat affected 

zone-base metal interface reaction. 

Metal Vapor Mass Transfer - Welded specimens of three refractory metal alloys, T-1 11, 

T-222, and FS-85, were randomly stacked and wrapped in tantalum foi l  for 180O0F, 100 hour 

and 1000 hour aging runs. Following the 100 hour age, the inside of the foil and the speci- 

men surfaces were observed to be stained. The discoloration, mostly dark blue, was quite 

disturbing since this i s  characteristic of contamination. However, x-ray fluorescence 

analysis showed that the stained side of the foil contained a high concentration of hafnium 

and a trace of zirconium compared to the clear outside surface of the foil which had neither 

element present. Apparently, hafnium from T-1 1 1 (Ta-8W-2Hf) and T-222 (Ta-9.6W-a.4Hf- 

0.01C) and zirconium from FS-85 (Cb-27Ta-10W-1 E) were evaporating from the specimens 

and condensing on the foil as thin films causing interference surface discoloration. The 

specimens were also stained in the same manner but these were unpacked without noting 

their relative positions so that adjacent specimen effects could not be correlated. 

The 1000 hour age offered a second opportunity to observe this phenomenon. Specimen 

orientation was carefully noted when unwrapping these specimens and a consistent story 

developed. Adjacent specimens, similar or dissimilar, shadowed one another. Shadows were 

thrown by the base metal and preferentially adsorbed by the weld and heat affected zone of 

the adjacent specimen. Vapor transfer i s  the apparent mechanism involved, while concen- 

tration differences at the surfaces of adjacent specimens generate the driving force for the 

constituent transfer. Coring in the weld and incipient melting in the heat affected zone 

followed by pickling prior to annealing would result in a depletion of hafnium or zirconium 

near the surface in these areas and account for their being preferentially shadowed by 

adjacent specimens and also their failing to throw shadows on adjacent specimens. 

0 
One group of specimens which were annealed at 1800 F for 1000 hours i s  shown in 

Figure 21. There were two stacks of specimens in this package as indicated in this figure. 

Specimens were examined and laid down in  sequence as they were unpacked and photographed. 
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This figure demonstrates the effect fairly clearly even though it i s  slightly flat due to the 

photographic difficulty resulting from lighting back reflection. Also, note that only one side 

of each specimen i s  shown whereas the comments in some cases apply to the backsides of the 

specimens. Arrows placed next to a specimen indicate that it shadowed the facing specimen. 

Several specimens show this effect clearly. The T1 TIG weld, second from the top of Stack 

No. 2, was shadowed by the T1 EB weld, third from the top. The TIG weld and i t s  heat 

affected zone were shadowed opposite the EB weld base metal but not opposite the EB weld 

proper (clean area across TIG weld). In Stack No. 1 the C3 TIG weld, sixth weld down, was 

obviously shadowed by the T1 TIG weld, seventh down, except at the facing area directly 

opposite the weld. Again the shadowed specimen wasmost affected in the weld and heat 

affected zone area. 

In Figures 21 and 22, specimens marked T1, T3, and C3 are alloys T-111, T-222, and 

FS-85 respectively. Interestingly, specimens annealed at 2400 F have been clean and free 

of discoloration. Apparently, diffusion of the vapor deposited f i lm  into the base metal occurs 

much more rapidly at 240OOF. 

0 

C. EFFECT OF OXYGEN CONTAMINATION ON THE WELDABILITY OF 
REFRACTORY METAL ALLOYS 

-~ ~~ 

Additional work has been initiated to evaluate the effect of oxygen contamination on 

the weldability and thermal stability of selected refractory metal alloys. This program i s  

designed to help f i l l  an important technology gap, namely, the comparative effect of low 

level oxygen contamination on several promising refractory metal alloys. This i s  important 

in the selection of alloys for vacuum application since even the best high vacuum environ- 

ment i s  a source of contamination capable of degrading alloy properties. For any one alloy 

the extent of damage occurring i s  a function of both the rate of reaction with the environ- 

ment and the sensitivity of the alloy to the contaminant. An important measure of material 

degradation i s  change in weldability which, in refractory metal alloys, i s  a sensitive and 

realistic measure of the response to increasing contamination. Obviously, retention of good 

weldabi lity with increasing low level contamination i s  a desirable alloy characteristic 

particularly since it i s  doubtful that complex long life systems would be operated without 

intermittent modification. 
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Three alloys have been selected for this evaluation: FS-85 (Cb-27Ta-1OW-1 Zr), 

T-111 (Ta+W-2Hf), and T-222 (Ta-9.6W-2.4Hf-O.OlC). Each alloy wi l l  be tested in the 

as-received condition (also as-welded) and then contaminated at four levels and evaluated 

again by welding and testing. The oxygen contamination levels w i l l  span the range from the 

as-received material to the point of obvious ductility impairment. The testing program out- 

lined w i l l  provide a measure of weld hot tear sensitivity, base and weld metal ductile-to- 

britt le transition temperatures, room temperature and elevated temperature tensile properties, 

weld quality (non-destructive testing), structural changes, and chemistry changes. 

Gas-oxidation i s  being used, followed by a vacuum heat treatment to provide a minimum 

oxygen concentration gradient through the material thickness. Figure 23 outlines the overall 

program which includes a 1000 hour thermal stability evaluation for the most promising alloy. 

Helium carrier gas doped with 100 ppm of oxygen was selected as a contamination med- 

ium to provide more uniform oxidation of large samples than could be expected using other 

gaseous oxidation or anodization methods. Since one of the evaluation temperatures for the 

1000-hour age and tensile testing i s  to be 150OoF (the other temperatures are 1800OF and 

22OO0F), 1500OF was the maximum doping temperature that could be used to avoid exceeding 

subsequent testing temperatures. For this reason init ial contamination temperatures investi- 

gated were at or below 1500 F. Higher doping temperatures would be expected to provide 

higher diffusion rates and correspondingly more uniform contamination over the material cross 

section. A background of data on the low partial pressure oxidation rates of columbium and 
o ( 5 6 7 8 9 )  tantalum was available indicating reasonable reaction rates would occur at 1500 F. ' ' ' 

0 

The retort assembly shown schematically in Figure 24 was designed to provide a uni- 
-6 

form temperature reaction chamber capable of being vacuum purged and baked out at 10 

torr prior to the oxidation run. The assembly i s  made from type 304 stainless steel which 

forms a protective oxide layer at lower oxidation temperatures. A preheater arrangement 

i s  used for the incoming oxygen doped helium to permit high gas flow rates without perturb- 

ing the furnace temperature distribution. Figure 25 i s  a photograph of the retort assembly 

and Figure 26 shows the gas supply and monitoring system servicing the reaction chamber. 
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The monitoring system allows both the inlet and outlet gas to be monitored for oxygen content 

as a check on the reaction rate and system leak tightness. 

Initial reaction rates measured at 150OOF (815OC) were higher than expected to the 

extent that even a small furnace load would consume oxygen faster than i t  could be supplied 

by the carrier gas. Also, the reaction rate was noted to be strongly dependent on oxygen 

partial pressure, giving rise to a non-uniform oxidation condition. This i s  demonstrated in 

the relationship shown in  Figure 27 wherein an expression was developed relating gas flow 

I rate, reaction rate, and specimen spacing to oxygen depletion in the contaminating gas 

stream as the gas flows along the specimen surface. Specimen contamination would vary 

linearly wi th  the oxygen partial pressure in the doping gas. Hence, for the high reaction 

rates observed at 1500 F, high contamination levels would occur at the specimen bottom 

and low levels at the top. Figure 28 i s  a curve developed from the oxygen depletion expres- 

sion relating the process correction required in  terms of reaction rate, gas flow rate, channel 

spacing and/or specimen geometry to avoid appreciable oxygen depletion in the carrier gas. 

From Figure 28, limiting the oxygen depletion in the exit gas to 10% (90% of inlet) would 

require a process correction factor of about 2000. This process correction could be achieved 

by reducing the reaction rate by 100 and increasing the gas flow rate by a factor of 20 with- 

out changing the load size or geometry. 

0 

l 

0 0 
In an attempt to reduce the reaction rate, lower temperatures from 750 F to 850 F, 

were investigated with two fold results. The reaction rate had decreased appreciably, by 

a factor of 40, and an analysis of contamination rates at different oxygen partial pressures 

indicated a negligible oxygen partial pressure dependence. Encouraging results with FS-85, 

which formed a visually uniform adherent black oxide f i lm  at 8OO0F led to a trial with full 

size sheet specimens. Figure 29 i s  a photograph of FS-85 oxidized to 700 ppm 0 

black oxide fi lm i s  subsequently diffused into the sample by a 10 

ment at temperatures of 1500 F, 18OO0F, or 220OOF. Weight change measurements have 

proven to be adequate for in-process oxygen pick-up determinations. Initial chemical 

analyses have indicated no nitrogen or carbon pick-up either in the columbium or tantalum 

alloys. Bead-on-plate welds have been made on process evaluation samples and both base 

The 2' - 8  
torr vacuum heat treat- 

0 
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and weld metal bend ductility tests have been run on contaminated FS-85, T-11 1, and T-222. 

The results appear to discriminate substantially between the ductility of T-111 and T-222 at 

the 150-200 ppm O2 level. Figure 30 compares the bend ductility of the three alloys as a 

function of the oxygen content. FS-85 appears to be tolerant of oxygen additions up to 

400 ppm. T-222 begins to show a loss of bend ductility at 150 ppm oxygen in both the base 

and weld metal following diffusion treatments at 180OoF or below. The 220OoF diffusion 

treatment restores the base metal bend ductility to -320 F, although the weld metal ducti l i ty 

i s  unaffected indicating that the higher temperature diffusion treatment produced a more 

favorable distribution or form of oxide in the base metal. The welding operation produces a 

complete oxygen redistribution in any case and, as expected, weld ductility was unaffected 

by the prior diffusion treatment. Bend tests made on T-222 diffusion treated at 180OoF and 

below have produced multiple ragged teas indicative of poor surface ductility which corre- 

lates with the high surface hardness noted in microhardness traverses. T-111 base and weld 

metal has produced ductile bends at -32OoF for oxygen concentration levels up to 200 ppm. 

0 

This data i s  only preliminary and following the completion of a ful l  process evaluation, 

the first ful l  scale oxidation runs w i l l  be made. Table 5 shows the contemplated oxygen 

doping levels. The alloy oxygen tolerance comparison, at least at lower levels, wi l l  be made 

on the basis  of equivalent atomic ppm. Intermediate doping levels of 200 ppm and 500 ppm 

wi l l  be run first, at which time the data may indicate that the proposed contamination levels 

should be changed. 

The bend ductility data presented were obtained from samples intended primarily to 

establish oxidation rates and therefore represent a variety of oxygen levels. The observed 
0 -3 

average oxidation rates at 840 F in an oxygen partial pressure of 76 x 10 torr (76~) are: 

-6 2 FS-85 13.0 x 10 g/cm /hr 

T-222 6 . 6 ~  l o 4  g/cm /hr 

T-1 11 5.1 x 10 g/cm /hr 

2 

-6 2 

0 
At the lower temperatures employed, (840 F) a surface oxide f i l m  i s  formed and the 

0 
reaction rate i s  typically nonlinear in contrast to the linear rates observed at 1500 F. 
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As-Received 

200 

500 

1000 

2000 

Ch rono logi ca I 
Order 

140 

500 

1000 

2000 

TABLE 5 - Selected Oxygen Contamination Levels 

T i l  1 l/T-222 
~ 

140 

350 

700 

1400 

~ ~~ 

Total O2 (ppm) 

T-111 FS-85 

100 

300 

600 

1100 

2100 

40 

1 80 

3 90 

740 

1440 

T-222 

80 

220 

430 

780 

1480 

(1) The contamination levels, expressed as ppm by weight, are adjusted to 
equivalent atomic pprn for each alloy. 

(2) If indicated by initial data, other levels may be substituted. 
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The shielding effect of a carrier gas has been demonstrated at the 1500OF oxidation 

temperature where a comparison wi th  other low partial pressure oxidation investigations was 

possible. Reported oxidation (5) rates of Cb-lZr at l6OO0F in vacuum with an oxygen par- 

-5 
t ia l  pressure of 1 x 10 

using one atmosphere of helium doped with 100 ppm of oxygen, equivalent to an oxygen 

partial pressure of 7.6 x 10 

tion rate of  Cb-12 and FS-85, the carrier gas has produced equivalent reaction rates at 

oxygen partial pressures differing by several orders of magnitude. 

torr are comparable to oxidation rates we have measured on FS-85 

-2 
torr. Thus, allowing for substantial differences in the oxida- 
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IV. FUTURE WORK 

4 

Base line tensile properties at room and elevated temperatures w i l l  be obtained for the 

columbium and tantalum alloys in  both the welded and unwelded conditions. Further informa- 

tion on the properties of plate welds w i l l  also be obtained. 
c 

The contaminated alloy weldability study w i l l  proceed with the first doping level, 

(500 ppm oxygen), of the three evaluation alloys, T-111, T-225 and FS-85. 
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